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Abstract. We study how, in the heavy-quark limit and at one loop, the amplitude of the radiative decays
B → γ�ν�, B → γγ, B → γ�+�− factorise, i.e., they can be written as a convolution of a (perturbative)
hard-scattering amplitude and the (nonperturbative) light-cone distribution amplitude of the B-meson.
Using the framework of the Soft-Collinear Effective Theory, large logarithms can be resummed and the
amplitudes of the 3 decays are shown to differ from each other only through the dynamics above MB .

Recently, the powerful framework of QCD factorisation [1]
was introduced for nonleptonic exclusive B-meson decays:
in the heavy-quark limit, their amplitudes can be factori-
sed, i.e. expressed in terms of process-dependent kernels,
which are computable perturbatively, and universal non-
perturbative objects, such as form factors and light-cone
distribution amplitudes (LCDA). In order to understand
better the structure of higher-order corrections, radia-
tive B-decays are very useful, since they involve only one
nonperturbative object, namely the B-meson LCDA [2].
We inverstigate here QCD factorisation for the decays
B → Xγ where X = �ν, �+�−, γ [3,4], in the case where
the energy of both the photon and X is large and of order
MB (we neglect the mass of the lepton).

1 B → γ�ν

1.1 Factorisation at tree level

The hadronic matrix element for the decay B → γ�ν� can
be written in terms of two form factors FV and FA:

1√
4πα

〈γ(ε∗, q)|ūγµ(1 − γ5)b|B̄(p)〉 = (1)

εµνρσε∗νvρqσFV (Eγ) + i[ε∗
µ(v · q) − qµ(v · ε∗)]FA(Eγ) .

We work in the B-meson rest frame and we introduce
light-cone coordinates l = (l+, l−, l⊥), defined by l± =
(l0 ± l3)/

√
2 and l⊥ = (l1, l2), so that

p = (MB/
√

2, MB/
√

2,0⊥) q2 = (0, q−,0⊥) . (2)

We define the light-cone distribution amplitude
(LCDA) of a state H which contains the b-quark by

ΦH
αβ(k̃+) =

∫
dz− eik̃+z− 〈0|ūβ(z)[z, 0]bα(0)|H〉|z+,z⊥=0 ,

(3)
a LPT-ORSAY-03-74

p − k

k

q1

q2

Fig. 1. Lowest-order diagram at leading twist contributing
to the process bū → γX, where X = �ν�, �+�− or γ and is
represented by the dashed line. The thick line represents the b-
quark and the thin line a light quark. The grey circle represents
the operator responsible for the b → u transition

where u, b are the quark fields and α, β are spinor labels.
[z, 0] denotes the gluon path-ordered exponential. FH

µ is
the matrix element of the weak b → u current,

FH
µ ≡ 〈γ(ε∗, q)|ūγµ Lb|H〉 , γµ L ≡ γµ(1 − γ5) . (4)

The question is whether, up to one-loop order in per-
turbation theory, the matrix element can be written in the
factorised form [2,3]

FH
µ =

∫
dk̃+

2π
ΦH

αβ(k̃+)Tβα(k̃+) , (5)

where the hard-scattering amplitude T does not depend
on the external state (H) and is a function of hard scales
only. We stress the distinction between k̃+ and the kine-
matical variables of the initial state H. In general, the
LCDA ΦH

αβ depends on the latter in a complicated and
non-perturbative way. The question we investigate here is
whether this dependence matches that in FH

µ so that (5)
holds with a single convolution variable.

Since T is independent of the external state H, we can
choose any convenient external state to compute it: here,
we take a pair of free on-shell quarks H = |bS(p−k)u(k)〉.
At tree level, the diagram in Fig. 1 and the crossed dia-
gram arise, but the latter is higher-twist due to the 1/MB-
suppression of the off-shell internal quark propagator. In
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order to evaluate the hard-scattering amplitude we pro-
ceed in the standard way: compute the matrix element,

F (0) bū
µ = − eu

2q−k+

{
v̄s(k) ε/∗

q/2 γµ L uS(p − k)
}

, (6)

then evaluate the LCDA at tree level,

Φbū
αβ(k̃+) = 2πδ(k+ − k̃+) v̄s

β(k) uS
α(p − k) , (7)

and finally combine the two to deduce the hard-scattering
amplitude:

F (0) bū
µ =

∫
dk̃+

2π
Φ

(0) bū
αβ (k̃+) T

(0)
βα (k̃+) , (8)

with the hard-scattering amplitude at tree level,

T
(0)
βα (k̃+) = − eu

2q−k̃+
[ε/∗

q/2γµ L]βα . (9)

As expected the hard-scattering amplitude depends only
on k̃+ (through the hard variable q2 · k̃). One can check
that the result (9) does not depend on the choice of the
external state by taking H = |qq̄g〉 [3].

Once T is known, one can switch back to the B-meson
as the external state. The Dirac structure of ΦB

αβ allows
one to define two (scalar) LCDA ΦB

+ and ΦB
− [5], which

leads to the following result for the form factors [3]:

FA,V = −fBMB Qu

3
√

2 Eγ

∫ ∞

0
dk̃+

ΦB
+(k̃+)

k̃+
+ O

(
αs,

1
MB

)

(10)

1.2 Factorisation at one loop

If factorisation holds at higher orders of perturbation
theory, one should obtain:

FH
µ = F (0) H

µ + F (1) H
µ + · · · = ΦH ⊗ T (11)

= [Φ(0) H ⊗ T (0)] + [Φ(0) H ⊗ T (1) + Φ(1) H ⊗ T (0)] + . . .

where ⊗ denotes the convolution, and the superscripts in-
dicate the power of αs. The hard-scattering kernels T (n)

contain only hard scales, whereas the distribution ampli-
tudes Φ(n) absorb all the soft effects.

This decay is a three-scale process, with a large scale
mb, a small scale ΛQCD and an intermediate scale (2q ·
k̃)1/2, which will correspond to the factorisation (sepa-
ration) scale. We work in the Feynman gauge and the
MS scheme: we denote µR the (renormalisation) scale ari-
sing in the computation FH

µ and µF the (factorisation)
scale for ΦH ⊗ T . A natural choice is µR = O(mb) and
µ2

F = O(mbΛQCD). Moreover, since the LCDA of the B-
meson involves only dynamics well below MB , we choose
to define it in HQET rather than in QCD.

As in sec. 1.1, we evaluate T (1) by taking H = |bS(p−
k) ūs(k)〉 with k = O(ΛQCD). Equation (11) yields:

Φ(0) H ⊗ T (1) = F (1) H
µ − Φ(1) H ⊗ T (0), (12)
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Fig. 2. One-loop leading-twist diagrams for bū → Xγ

so that, at one-loop order we need to evaluate both Φ(1) H

and F
(1) H
µ . The corresponding diagrams are shown in

Fig. 2. There are IR singularities in both terms on the
right-hand side of (12), but they should cancel in the dif-
ference for factorisation to hold. For this process, this can-
cellation occurs diagram by diagram, and we outline now
a few specificities of each diagram.

The electromagnetic vertex diagram, Fig. 2a, leads to
a mass singularity for F

(1)
µ from the region collinear to k.

However, Φ(1) ⊗ T (0) exhibits exactly the same singula-
rity – its expression corresponds to F

(1)
µ once the eikonal

approximation is applied to the internal light-quark pro-
pagator (m is the light-quark mass):

i(q/2 − k/ − l/)
(q2 − k − l)2 − m2 → iq/2

−2q−(k+ + l+)
, (13)

where l denotes the gluon momentum. In the collinear
region of phase space, the eikonal approximation (13) is
valid: thus, the IR singularities in F

(1)
µ and Φ(1) ⊗ T (0)

from Fig. 2a are equal and cancel in (12).
The weak-vertex correction, Fig. 2b, yields no IR sin-

gularities either for F
(1)
µ or Φ(1)⊗T (0), but it contains large

single and double (Sudakov) logarithms of ΛQCD/mb. The
box diagram, Fig. 2c, contributes at leading-twist to F

(1)
µ

only in the region where the gluon has a soft momentum
O(ΛQCD). But in this region, the eikonal approximation
can be applied and leads to the same integral as Φ(1)⊗T (0).
Therefore, the two contributions are identical, and the box
diagram does not contribute to T (1).
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In all diagrams, IR singularities cancel between F
(1)
µ

and Φ(1) ⊗ T (0) [3] – factorisation holds at one loop:

FA,V (Eγ) =
∫

dk̃+ΦB
+(k̃+; µF )T (k̃+, Eγ ; µF ) , (14)

T = −fBMBQu

3
√

2Eγ

1
k̃+

[
1 +

αsCF

4π
K(k̃+, Eγ ; µF )

]
(15)

K = log2 2k̃+q−
µ2

F

− 1
2

log2 m2
b

µ2
F

+
5
2

log
m2

b

µ2
F

− 2 log
mb√
2q−

+2 log
m2

b

µ2
F

log
mb√
2q−

−
√

2q−
mb − √

2q−
log

√
2q−
mb

(16)

+2Li2

(
1 −

√
2q−
mb

)
+ 4Li2

(
1 − mb√

2q−

)
− π2

4
− 7 .

1.3 Higher orders

Equation (16) involves large double and single logarithms
for µ2

F = O(ΛQCDmb). They can be resummed in the fra-
mework of the Soft-Collinear Effective Theory (SCET),
which describes the interaction of infinitely heavy quarks
with soft and/or collinear quarks and gluons [6]. The weak
b → u current can be matched onto the operators Oi of
the effective theory [7]: ūγµ(1 − γ5)b =

∑
i CSC

i (µ)Oµ
i (µ).

The Ci are Wilson coefficients which describe the phy-
sics above µ. The large logarithms contained in the Ci can
be resummed using renormalisation group equations:

CSC
i (µF ) = CSC

i (mb) exp[−S(Eγ ; µF )] . (17)

CSC
i (mb) is a perturbative series in powers of αs(mb). S

contains large (Sudakov) logarithms of µF /mb and does
not depend on the SCET operator considered. For this
decay, only the SCET operator O3 in [7] is relevant.

In the SCET expression for the weak-current contri-
bution to Fµ, one can identify the soft-gluon interaction
below µF to the contribution to Φ ⊗ T , which has to be
removed to determine the hard-scattering kernel. The lat-
ter corresponds therefore to the sum of the remaining
collinear-gluon interaction and the electromagnetic-cur-
rent [3]:

T = −CSC
3 (µF )

fBQumb

3
√

2Eγ

1
k̃+

[
1 +

αs(µF ) CF

4π
Kt

]
(18)

Kt = log2 2q−k̃+

µ2
F

− π2

6
− 1 . (19)

The large logarithms in (14) are now exponentiated in the
matching coefficient CSC

3 (µF ) for µ2
F = O(ΛQCDmb).

2 B → γγ and B → γ�+�−

The discussion is very similar for B → γγ and B → γ�+�−
(with (1−2Eγ/mb) � ΛQCD/mb, i.e., away from the end-
point). One can show that these decays can be expres-
sed, at leading twist, in terms of the axial/vector form

factors FV,A defined above and the tensor form factors
FT,T ′ [4], stemming from the operators O7, O9, O10 of the
effective Hamiltonian. Other operators contribute to these
decays, but power counting arguments show that they af-
fect only short distances at leading twist (their contribu-
tions can thus be included in effective Wilson coefficients
for O7, O9, O10).

FT,T ′ can be discussed along similar lines as FV,A. The
only difference comes from the weak-vertex correction, and
arises only from the (ultraviolet) dynamics above mb. This
is checked at one loop, and can be generalised at higher
orders within SCET [4]: FT,T ′ can be expressed exactly as
in eqs. (18)-(19) up to replacing CSC

3 → CSC
9 . CSC

9 fulfills
(17) with the same exponential term S.

Thus, the nonperturbative effects encoded in the mo-
ments of the B-meson LCDA are identical for all 3 de-
cays. Ratios of FT,T ′ and FV,A and thus those of de-
cay amplitudes for radiative B-decays are proportional to
CSC

9 (mb)/CSC
3 (mb) which can be expressed as a perturba-

tive series in αs(mb).

3 Conclusion

We have shown that QCD factorisation holds at one loop
for radiative B-decays. Using SCET, large (Sudakov) loga-
rithms were resummed, and the three decays were shown
to differ from each other only through (perturbative) dy-
namics from scales above mb. Further extensions of the
proof were presented in [8]. The present results for purely
radiative B-decays could be useful to understand more
complicated processes with hadronic final states.
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